If it's not what You are looking for type in the equation solver your own equation and let us solve it.
98n^2+0n-200=0
We add all the numbers together, and all the variables
98n^2+n-200=0
a = 98; b = 1; c = -200;
Δ = b2-4ac
Δ = 12-4·98·(-200)
Δ = 78401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{78401}}{2*98}=\frac{-1-\sqrt{78401}}{196} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{78401}}{2*98}=\frac{-1+\sqrt{78401}}{196} $
| 2x+(-7)+(-9x)=14 | | |3W-4|=|3x-5| | | 10x+2(8x-2)=9 | | 4d+3=14d-7 | | x^2-7x+8=20 | | 3n-3=7n+2 | | 7x-4=-5+6x | | 2a+9=-3a-1 | | 4n+6=2n-14 | | X3-5x2+15x-27=0 | | 6n−47=9−8n | | 2a+9=3a-1 | | -2x-7=3x+2 | | 7y+20=62 | | -1/2x+10/1/4=60 | | 4(x-3)=28-4x | | 4(3x+2)-6(x-1)-18=14 | | 0=x^2-64x+512 | | 50=60p+40*(1-p)/1.06 | | 10y2+21y+2=0 | | 50=60p+40(1-p)/1.06 | | 8(3x-5)-12+2(5+5x)=-60 | | 7/4x-1=2/x+1 | | 360=301+(2x+6)+(3x-41) | | 2x+17=53−2x | | 10x+1+10+2=210 | | 14w-6w=64 | | 3(4x+24)=2(5x+61) | | (2/5)x-2=5-(3/5)x | | 3n^2+n+-2730=0 | | 3n2+n+-2730=0 | | 2/5x-2=3/5x-5 |